If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+9x-11=0
a = 6; b = 9; c = -11;
Δ = b2-4ac
Δ = 92-4·6·(-11)
Δ = 345
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{345}}{2*6}=\frac{-9-\sqrt{345}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{345}}{2*6}=\frac{-9+\sqrt{345}}{12} $
| 15−2y=49 | | 5(y-3)+2=3(y+1) | | 2y2+3.5y=1 | | (2x-4)=104 | | 2a/3+3=13-a | | (s-5)^2=16 | | (9x+4)=(7x+32) | | 6x+24x=-24 | | 6x+10/6=11/3 | | 4x–2(x–3)=8 | | -12x+4x^2=-9 | | 12r=8r+20 | | 10m+8=180 | | X²-22x-167=0 | | 6x+5=4x-16 | | 2m^2-16m=0 | | x²=6x+22 | | 11x^2=47-14 | | n+4=12+3n-n | | 15-2(7-x)=7x | | 1+2n=8+7n-3-6n | | x^2-1.2x-0.5=0 | | (m-2)(m-5)=4 | | X2+5x+6=(X+2)(x+3) | | -1/2^2+8x+2=32 | | -1/2x²+8x+2=32 | | b³-15=0 | | 7x+9=-75# | | 2h^2-72=0 | | 0=-16x^2+8x+87 | | 4x+18=4x+12-2x | | 2x2+7x+2=0 |